Antimutagenic and antioxidant activity of novel 4-substituted phenyl-2,2'-bichalcophenes and aza-analogs

El-Sayed, Wael; Hussin, Warda A;

Abstract


Evaluation of the potential antimutagenic activities of new compounds by Ames assay has been of great interest for the development of novel therapeutics for many diseases including cancer. Ten novel bichalcophenes with in vitro and in vivo broad spectrum activities against various microbial strains were investigated throughout the present study for their cytotoxic, antioxidant, and antimutagenic potential in a Salmonella reverse mutation assay system against sodium azide (NaN(3)) and benzo[a]pyrene (B[a]P). At nontoxic concentrations, all bichalcophenes alone or in combination with NaN(3) (1 μg/plate) or B[a]P (20 μM) with S9 mix were not mutagenic. The bichalcophenes significantly reduced NaN(3)- and B[a]P-induced mutagenicity under pre-exposure and co-exposure conditions in a concentration-independent manner. However, the antimutagenic activity of bichalcophenes against B[a]P varied depending on the exposure regimen, being more effective under pre-exposure conditions. The antimutagenic activity was correlated with a high antioxidant activity that could promote the DNA repair system. Bichalcophenes are least likely to interfere with the microsomal bioactivation of B[a]P. Monocationic bichalcophenes were superior to the corresponding mononitriles as antimutagenic agents against both mutagens investigated, possibly due to the higher nucleophilic centers they have which could bind and protect the bacterial DNA. Three monocationic compounds were shown to have a strong anticancer activity against the 58 cell line. Based on the results of the present investigation, monocationic compounds (1, 4, and 5B) will be selected for further time consuming and costly chemoprevention studies in animal models.


Other data

Title Antimutagenic and antioxidant activity of novel 4-substituted phenyl-2,2'-bichalcophenes and aza-analogs
Authors El-Sayed, Wael ; Hussin, Warda A 
Issue Date 2013
Journal Drug design, development and therapy 
DOI 73-81
7
1177-8881
10.2147/DDDT.S40129
PubMed ID 23430305

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

Citations 9 in pubmed
Citations 31 in scopus
views 11 in Shams Scholar


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.